Baking Pi’s 1: Set Up

In the past few weeks, I’ve been playing around with the amazing Raspberry Pi embedded computer platform. In the “Baking Pi’s” series of posts, I will describe how to setup and use a Raspberry Pi for different applications.

Raspberry Pi is a powerful and affordable credit-card sized computer. With some basic programming and networking skills and a lot of patience you can use it to setup customized physical computing projects. In this first post, I will describe how to setup a Raspberry Pi and in future posts, I will describe how to use it for fun and useful projects with it, including a networked Rafigh, a simple interactive sound box and other things. I will work with a variety of Pi’s including Raspberry Pi 1, Pi Zero and Raspberry Pi B+. The set ups are very similar and I will mention when there are differences. I will also use a Mac computer (although having access to a Linux machine will be useful).

Note: These posts are fairly technical, and if they are not your cup of tea, rest assured that I plan to get back to my travel and life posts as soon as I have fun adventures to report 🙂


Raspberry Pi family: (bottom to top) Raspberry Pi 1, Raspberry Pi B+ and Raspberry Pi Zero

Setting up the Raspberry Pi Software

First, we need to setup the Raspberry Pi to work in headless mode, meaning that we can connect to it via a different computer and don’t need to connect it to a monitor, keyboard and mouse. There are many advantages to setting up your Pi in this mode: you won’t need extra peripherals and you can embed the Pi in physical computing projects. In the case of the networked Rafigh, this step is essential because you will need to be able to leave the Raspberry Pi next to growing mushrooms and debug and control it remotely.

Before I start with the software, a note on how to power the Pi. I’ve been using three ways of powering the Pi with varying degrees of success. Surprisingly, many of the problems that arise with using Raspberry Pi’s are related to the use of power supplies that are not adequate or consistent depending on what other peripherals (Wifi dongle, lights, speakers) you connect to the Pi. The usual way is to use a good quality 5V, 2A wall plug (like this one). The trick is that some wall plugs claim that they can provide up to 2A current but in reality they are inconsistent, so investing in a better quality adapter is worth it. The Pi does work with adapters that provide less than 2A current though and depending on your project needs, a portable battery might be enough. The other two ways, I have powered the Pi are 1) using a consumer grade Duracell portable power supply and a combination of a Lithium Ion Polymer Battery and a PowerBoost 500 Charger. To me this last combination is very promising for wireless projects, but I am still experimenting with it and not sure how stable it is.

Once you have decided on how to power the Pi, you need to prepare your SD card. You can usually get away with a 4GB MicroSD card but I recommend using an 8GB one, as you might be tempted to use more space in the future. Setting up the SD card can be pretty straight forward if you are comfortable with using the command line (terminal) in Mac. First, you need to download a Linux distribution. I recommend getting the latest version of Raspbian Jessie from here. Also, if you are comfortable with using Torrents, I recommend getting the image file from the Torrent because it is faster and also doesn’t fail in the middle of the download.

Once you have the zipped image file. You need to unzip it into an .image file. After this open up the terminal in Mac. If you have an SD card reader/writer on your Mac, plug your empty SD card in there. Alternatively, you can use an external SD card reader/writer. My on-board SD card reader/writer has become a bit faulty and sometimes doesn’t let me write to an SD card. A trick I’ve used is to set the lock switch on the SD card to the middle position and sometimes this allows the write to happen. This method doesn’t work well if you are trying to write to a MicroSD Card. So I usually prefer using an external card reader.

Next, we want to copy the image to the SD card. Note that this process will erase all data on the card, so be careful not to put the wrong card in the reader! In Mac, open a Terminal window and (with the SD card in the reader) type:

diskutil list

This will list all the devices on your mac and their partitions. You want to dismount the partitions on the SD card. Be careful about this step, you don’t want to mix up your disks! First, you should identify your disk. Usually, it is easy to do that by looking at the size of the disk. Another method is to use the diskutil list commend before you insert the SD card and note what disks are there and then insert the SD card and note which new disk was added. In any case, once you know that your SD card is, for example, disk3, then you should unmount all of its partitions (you can identify these by the letters number combinations that follow the disk name). For example, to unmount partition 1 (i.e., s1) on disk3 use the following command.

sudo diskutil unmount /dev/disk3s1

Once all the partitions are dismounted, you are ready to start the image copying process. You can use the following command:

sudo dd bs=1m if=~/Desktop/2015-11-21-raspbian-jessie.img of=/dev/disk3

Where “2015-11-21-raspbian-jessie.img” is the name of your image file that is stored on the desktop. If you have problems with the “bs=1m” parameter, use “bs=1M” or “bs=4M”. Also, note that the name of the destination drive refers to the whole drive, not to a single partition (e.g., “disk3” not “disk3s1”).

This operation will take a while. In Mac, you can use Ctrl+t to see the status of the write operation.

Update: Since writing this article, I came across a very handy free little program called ApplePi-Baker that I can highly recommend to prepare your SD card. A neat feature of this program is that it makes backing up and restoring copies of your program easy. Also, when I had trouble with formatting my SD cards in the past (including encountering the notorious “bad superblock” problem!), this program allowed me to correctly reformat the SD card and saved me from throwing it away thinking it was broken beyond repair!

Connecting to the Raspberry Pi

Once you have the SD card ready, you are on your way to a working Raspberry Pi! Now, we need to setup the Raspberry Pi to work in “headless” mode. Again, there are multiple ways to do this and I will briefly cover three options.

The first option is to plug-in your Pi directly into your router. If your router is setup to accept DHCP (i.e., assign IP addresses dynamically), then you should see the Pi on your local network within a couple of minutes. You can use the terminal command on Mac to find out the Pi’s ip address:

arp -a

A second method to connect to the Pi is via ethernet cable.  The good thing about this method is that once you set it up, you don’t need an internet connection to access the Pi. On the negative side, this method might significantly slow down your wifi connection while you are connected to the Pi. For this method to work, you have to setup your Mac first. First, you need to set ethernet to DHCP. Go to Network Settings and click on Ethernet. In the Configure IPv4 select the “DHCP” option.

Next, go to System Preferences and under Internet and Wireless, select Sharing. Here, enable Internet Sharing through Ethernet. Now, if you plug in the Pi via ethernet, you should see it after a while on the network using:

arp -a

Finally, the third way to connect to the Pi is via wifi. You can connect the Pi to the internet wirelessly via a compatible wifi dongle. This is an excellent (although sometimes faulty) option and with some tweaking should work well. In order to do this, you will have to edit the interfaces file on your Pi. In order to do that you will have to access the Pi file system either through one of the methods above or via a Linux machine. You can not use Mac without third-party software to manipulate files on the internal Pi file system. (You can access files on visible partition of the Pi in Mac using file sharing but that doesn’t give you access to the files we need for this step.) So assuming you can ssh into your pi, you will need to change the /etc/network/interfaces file:

sudo nano /etc/network/interfaces

You need to change the file contents to the following:

# Include files from /etc/network/interfaces.d:
source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

iface eth0 inet dhcp

auto wlan0
allow-hotplug wlan0
iface wlan0 inet dhcp
wpa-ssid "your-network-name"
wpa-psk "your-network-password"

Once you have done this save the file, shutdown the Pi, plug  in the wifi dongle and power up. You should see the Pi on your network in a few minutes.

Note: In case you want to connect to a wifi hot spot that doesn’t have a password and requires you to use a login page to connect you can set a static ip address for your Pi and connect by putting the name of the network in the interfaces file. So your file would look something like:

# Include files from /etc/network/interfaces.d:
source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

iface eth0 inet dhcp

auto wlan0
allow-hotplug wlan0
iface wlan0 inet static
address (your ip address here) 
wireless-essid xfinitywifi

allow-hotplug wlan1
iface wlan1 inet manual
    wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

After this, Raspberry Pi will connect to the wifi network and you will need to use a browser to navigate to the login page and register your pi. If you want to setup your pi without a monitor and keyboard, a possible way (I wasn’t successful with!) is register the MAC address of your pi using anther device (e.g., your laptop) by spoofing its MAC address. See here  for more information on that method.

Once you know the ip address, you can ssh into the pi using

ssh pi@

where you should replace “” with your ip address. You will be prompted for a password which is “raspberry” by default.
Once you can SSH into the Raspberry Pi, the fun begins! A good first step when you are here is to do some basic maintenance in the Pi. The first thing, I usually do is to expand the file system and set the date and time. You can do both of these by accessing the configuration dialogue using:

sudo raspi-config

Next, you want to update the Pi using the following commands:

sudo apt-get update
sudo apt-get upgrade

When updating it’s good to keep an eye out on the disk size using:

df -h

To clean up after installing packages use

sudo apt-get clean

Finally, use the following commands to logout of ssh, reboot the Pi and to shutdown after you are done:

sudo reboot
sudo shutdown -h now

It is important to shut down the Pi properly. Otherwise, the SD card might get damaged.

If you want to give your Pi a specific name (rather than an ip address) to use to log in to, you can use the Bonjour service described here. If you have multiple pi’s make sure you name them differently by following the instructions here.

If you would like to access the graphical interface of the Pi from your computer, you usually have to setup a VNC server. But if you are using a Mac, there’s an easy shortcut to access the graphical interface: using the X11 app! Here’s how to start it from the terminal:

ssh -x pi@<your PI's ip address>

Once logged in you can start an Xsession with:


To end the session press Ctrl + x from the original terminal window.

Note: When connecting to the Pi, if you get an error with the message: “Warning: Remote Host Identification Has Changed” you can use the following command to clean your stored keys and get rid of the message:

ssh-keygen -R "you server hostname or ip"





Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s